首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1926篇
  免费   307篇
  国内免费   15篇
  2024年   5篇
  2023年   51篇
  2022年   52篇
  2021年   81篇
  2020年   89篇
  2019年   107篇
  2018年   57篇
  2017年   91篇
  2016年   70篇
  2015年   81篇
  2014年   152篇
  2013年   148篇
  2012年   82篇
  2011年   86篇
  2010年   53篇
  2009年   78篇
  2008年   78篇
  2007年   83篇
  2006年   78篇
  2005年   43篇
  2004年   47篇
  2003年   41篇
  2002年   27篇
  2001年   33篇
  2000年   42篇
  1999年   31篇
  1998年   37篇
  1997年   29篇
  1996年   30篇
  1995年   37篇
  1994年   25篇
  1993年   35篇
  1992年   22篇
  1991年   14篇
  1990年   24篇
  1989年   26篇
  1988年   25篇
  1987年   13篇
  1986年   20篇
  1985年   13篇
  1984年   21篇
  1983年   13篇
  1982年   18篇
  1981年   17篇
  1980年   9篇
  1979年   5篇
  1977年   6篇
  1973年   5篇
  1972年   4篇
  1970年   6篇
排序方式: 共有2248条查询结果,搜索用时 15 毫秒
1.
急性脑梗死约占全部脑卒中的70%,病死率和致残率高,且极易复发。但目前针对急性脑梗死在时间窗内溶栓、抗凝等治疗手段不能从根本上切实有效地修复受损脑组织,且伴有出血等风险。寻找脑梗死形成发展的原因并予以治疗迫在眉睫。酸中毒是引起缺血性脑损伤的重要机制。大量实验研究表明,酸中毒能加重神经元的缺血性损伤,且其梗死面积与酸中毒的程度直接相关。但缺血产生的酸中毒如何引起神经元损伤的确切机制尚不明确。最近研究发现酸中毒能激活一种在中枢及周围神经中广泛存在的膜通道,即酸敏感离子通道,它对Ca2+通透,能引起细胞内Ca2+超载,同时能激活胞内酶引起细胞内蛋白质、脂类及核酸的降解,加重缺血后脑损伤。本文就酸敏感离子通道1a与脑梗死做一综述。  相似文献   
2.
Thermodilution cardiac output determinations and multigated equilibrium blood-pool scintigraphy were performed in ten healthy chacma baboons (Papio ursinus). The correlation was moderately good between both the radionuclide and thermodilution stroke volume (r = 0.58, SEE = 3 ml; SVth = 0.78SVr + 15.6 ml) as well as the cardiac output (r = 0.72, SEE = 0.2 liter/min; COth = 0.56 Cor + 2.1 liter/min). The attenuation depth dr as determined by radionuclide techniques was found to correlate well with the radiologically determined values dx (r = 0.8, SEE = 0.4 cm; dx = 0.87dr + 0.72 cm) which validated the depth values used in the calculations.  相似文献   
3.
Local cerebral glucose utilization (LCGU) was measured, using the quantitative autoradiographic [14C]2-deoxy-D-glucose method, in 56 brain regions of 3-month-old, awake Fischer-344 rats, after intraperitoneal administration of sulpiride (SULP) 100 mg/kg. SULP, an "atypical" neuroleptic, is a selective antagonist of D2 dopamine receptors. LCGU was reduced in a few nondopaminergic regions at 1 h after drug administration. Thereafter, SULP progressively elevated LCGU in many other regions. At 3 h, LCGU was elevated in 23% of the regions examined, most of which are related to the CNS dopaminergic system (caudate-putamen, nucleus accumbens, olfactory tubercle, lateral habenula, median eminence, paraventricular hypothalamic nucleus). Increases of LCGU were observed also in the suprachiasmatic nucleus, lateral geniculate, and inferior olive. These effects of SULP on LCGU differ from the effects of the "typical" neuroleptic haloperidol, which produces widespread decreases in LCGU in the rat brain. Selective actions on different subpopulations of dopamine receptors may explain the different effects of the two neuroleptics on brain metabolism, which correspond to their different clinical and behavioral actions.  相似文献   
4.
Summary The wall of the cerebral aqueduct was examined in 20 male rats at the light- and electron-microscopic levels. Disorder in ciliary orientation was occasionally seen in ordinary ependymal cells. Ependymal cells possessing intracellular cysts of 5 to 30 urn in diameter were observed within and beneath the aqueductal ependyma in all animals examined. Light-microscopic reconstruction from serial, 10-m thick frontal sections revealed an extensive distribution of cystic ependymal cells (CECs), especially along the ependymal ridges in the rostral half of the aqueduct, and along the dorsal region of the aqueductal lining in the caudal half. Both cystic and surface membranes of CECs bore microvilli and cilia. Ectopic ependymal cells (EECs) characterized by densely packed microvilli, well-developed intermediate junctions and cilia, but without cysts, were situated in the subependymal region adjacent to a CEC or another EEC. The ependymal ridges were long, narrow and sporadically stratified ependymal linings extending rostrocaudally and bilaterally along the aqueductal surface. Tanycyte-like cells filled the surface region of the ridge, and CECs and EECs were frequently seen in the core. Intraventricularly injected microperoxidase was detected among densely packed microvilli but not in the cystic lumina of CECs, indicating that EECs and CECs are distinct entities.  相似文献   
5.
Chronic hyperphenylalaninemia maintained with the aid of a suppressor of phenylalamine hydroxylase, -methylphenylalanine, increases the glycine concentration and the phosphoserine phosphatase activity of the developing rat brain but not that of liver or kidney. Similar increases occur after daily injections with large doses of phenylalanine alone, while tyrosine, isoleucine, alanine, proline, and threonine, were without effect. Treatment with methionine, which increases the phosphoserine phosphatase activity of the brain and lowered that of liver and kidney, left the cerebral glycine level unchanged. When varying the degrees of gestational or early postnatal hyperphenylalaninemia, a significant linear correlation was found between the developing brains' phosphoserine phosphatase and glycine concentration. Observations on the uptake of injected glycine and its decline further indicate that coordinated rises in the brain's phosphoserine phosphatase and glycine content associated with experimental hyperphenylalaninemia denote a direct impact of phenylalanine on the intracellular pathway of glycine synthesis in immature animals.  相似文献   
6.
During the reductive process in the tissues, the aerobes generate a number of oxidants. Unless these oxidants are reduced, oxidative damage and cell death would occur. Oxidation of plasma membrane lipids leads to autocatalytic chain reactions which eventually alter the permeability of the cell. The role of oxidative damage in the pathophysiology of diabetic complications and ischemic reperfusion injury of myocardium, especially the changes in the channel activity which may lead to arrhythmia have been studied. Hyperglycemia activates aldose reductase which could efficiently reduce glucose to sorbitol in the presence of NADPH. Since NADPH is also aldose required by glutathione reductase for reducing oxidants, its diversion would lead to membrane lipid oxidation and permeability changes which are probably responsible for diabetic complications such as cataractogenesis, retinopathy, neuropathy etc. Antioxidants such as butylated hydroxy toluene (BHT) and also reductase inhibitors prevent or delay some of these complications. By using patch-clamp technique in isolated frog myocytes, we have shown that hydroxy radicals generated by ferrous sulfate and ascorbate as well as lipid peroxides such as t-butyl hydroperoxide facilitate the entry of Na+ by oxidizing Na+-channels. Increased intracellular Na+ leads to an increase in Na+/Ca2+ exchange. The increased Na+ concentration by itself may produce electrical disturbance which would result in arrhythmia. Increased Ca2+ may affect proteases and may help in the conversion of xanthine dehydrogenase to xanthine oxidase, consequently increased production of super oxide radicals. Increased membrane lipid peroxidation and other oxygen free-radical associated membrane damage in myocytes has been demonstrated.  相似文献   
7.
Alterations in cardiac membrane Ca2+ transport during oxidative stress   总被引:3,自引:0,他引:3  
Although cardiac dysfunction due to ischemia-reperfusion injury is considered to involve oxygen free radicals, the exact manner by which this oxidative stress affects the myocardium is not clear. As the occurrence of intracellular Ca2+ overload has been shown to play a critical role in the genesis of cellular damage due to ischemia-reperfusion, this study was undertaken to examine whether oxygen free radicals are involved in altering the sarcolemmal Ca2+-transport activities due to reperfusion injury. When isolated rat hearts were made globally ischemic for 30 min and then reperfused for 5 min, the Ca2+ -pump and Na+-Ca2+ exchange activities were depressed in the purified sarcolemmal fraction; these alterations were prevented when a free radical scavenger enzymes (superoxide dismutase plus catalase) were added to the reperfusion medium. Both the Ca2+- pump and Na+- Ca2+ exchange activities in control heart sarcolemmal preparations were depressed by activated oxygen-generating systems containing xanthine plus xanthine oxidase and H2O2; these changes were prevented by the inclusion of superoxide dismutase and catalase in the incubation medium. These results support the view that oxidative stress during ischemia-reperfusion may contribute towards the occurrence of intracellular Ca2+ overload and subsequent cell damage by depressing the sarcolemmal mechanisms governing the efflux of Ca2+ from the cardiac cell.  相似文献   
8.
Conclusions Current neurochemical studies of the NMDA receptor macromolecular complex are yielding new insights into the interactions of the subunits of this complex and the associated potential clinical benefits of selective modulation of these subnits. Such studies offer the great potential for a new generation of pharmacotherapies for a wide range of CNS disorders, including stroke, a condition for which there is currently no effective pharmacological treatment. However, it is essential to understand that the first generation products in this area may not be optimal pharmacotherapies, such that haracterization of possible receptor subtypes and understanding the molecular biology of the component proteins of the receptor complex will be crucial in the design of the optimal pharmacological modulators of the NMDA receptor complex.Special issue dedicated to Dr. Erminio Costa  相似文献   
9.
To determine the level of cerebral blood flow reduction which causes striatal dopamine release, extracellular dopamine and cerebral blood flow was simultaneously determined using in vivo brain dialysis and a hydrogen clearance method, respectively, in the striatum of spontaneously hypertensive rats, before and during experimental cerebral ischemia. The ischemic flow threshold for neurotransmitter dopamine release was found to be 20% of the resting value or 8–10 ml/100g/min of cerebral blood flow, being similar to those for energy and membrane failures.  相似文献   
10.
Galanin is a recently isolated neuropeptide that is of particular interest in dementing disorders because of its known colocalization with choline acetyltransferase in magnocellular neurons of the basal nucleus of Meynert. These neurons degenerate in Alzheimer's disease, and there is a corresponding deficiency of cortical choline acetyltransferase activity. In the present study, galanin-like immunoreactivity was measured in the postmortem cerebral cortex and hippocampus of 10 controls and 14 patients who had had Alzheimer's disease. Significant reductions of choline acetyltransferase activity (50-60%) were found in all regions examined; however, there was no significant effect on concentrations of galanin-like immunoreactivity. Similar measurements were made in postmortem tissues of 12 control and 13 demented Parkinsonian patients who had had Alzheimer-type cortical pathology. Choline acetyltransferase activity was again significantly decreased in all regions examined but there were no significant reductions in galanin-like immunoreactivity. Experimental lesions of the fornix in rats produced parallel significantly correlated reductions of both choline acetyltransferase activity and galanin-like immunoreactivity in the hippocampus. Galanin-like immunoreactivity in the human hypothalamus consisted of two molecular-weight species on gel-permeation chromatography, and two forms were resolved by reverse-phase HPLC. The paradoxical preservation of galanin-like immunoreactivity, despite depletion of the activity of choline acetyltransferase, with which it is colocalized, is as yet unexplained. Recent studies have shown that galanin inhibits both acetylcholine release in the hippocampus and memory acquisition; therefore, preserved galanin may exacerbate the cholinergic and cognitive deficits that accompany dementia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号